SOLUTIONS TO THE QUIZ

Problem 1

The daily interest rate is $\frac{0.10}{365}=0.0002739726$.
Let T be the number of days needed for the account value to exceed $\$ 1,200$.
Account value after T days $=1000 \cdot(1+0.0002739726)^{T}$. So,

$$
\begin{aligned}
1000 \cdot(1.0002739726)^{T} & >1200 \\
(1.0002739726)^{T} & >1.2 \\
T \cdot \ln (1.0002739726) & >\ln (1.2) \\
T & >\frac{\ln 1.2}{\ln 1.0002739726}=
\end{aligned}
$$

So, at least 666 days are needed for the account value to exceed $\$ 1,200$.
Note that due to daily compounding, the required time is less than 2 years by about 2 months!

Problem 2

Number of ways of selecting 5 widgets with 2 defectives from available set of widgets

$$
\begin{aligned}
& =(\# \text { of ways of selecting } 2 \text { defectives out of } 25) \cdot(\# \text { of ways of selecting } 3 \text { OK out of } 75) \\
& ={ }^{25} C_{2} \cdot{ }^{75} C_{3} \\
& =\frac{25!}{2!\cdot 23!} \cdot \frac{75!}{3!\cdot 72!} \\
& =\frac{(25) \cdot(24)}{(2) \cdot(1)} \cdot \frac{(75) \cdot(74) \cdot(73)}{(3) \cdot(2) \cdot(1)} \\
& =(300) \cdot(67,525)=20,257,500
\end{aligned}
$$

Number of ways of selecting 5 widgets from available set of widgets without regard to defectives $=\#$ of ways of selecting 5 widgets out of 100

$$
={ }^{100} C_{5}=\frac{100!}{5!\cdot 95!}=\frac{(100) \cdot(99) \cdot(98) \cdot(97) \cdot(96)}{(5) \cdot(4) \cdot(3) \cdot(2) \cdot(1)}=75,287,520
$$

Probability of obtaining 2 defectives in 5 randomly selected widgets
$=(\#$ of ways of selecting 5 widgets with 2 defectives)/(\# of ways of selecting 5 widgets without regard to defectives)
$=\frac{20,257,500}{75,287,500}$
$=0.2690685$ or 26.90685%

Problem 3

Let Π denote the monopolist's profit.

$$
\begin{aligned}
\Pi & =\text { Revenue }- \text { Cost } \\
& =P \cdot Q-[750+8 Q] \\
& =P \cdot(100-P)-[750+8 \cdot(100-P)] \\
& =-P^{2}+108 P-1550
\end{aligned}
$$

Taking derivatives with respect to P of both sides and setting equal to zero:

$$
\frac{d \Pi}{d P}=-2 P+108=0
$$

And so, optimal $P=108 / 2=\$ 54$.

Problem 4

Let D denote the event that a randomly selected widget is defective.
Let A denote the event that a randomly selected widget is produced by Factory A.
Let B denote the event that a randomly selected widget is produced by Factory B. Let $\operatorname{Pr}(X \mid Y)$ denote the conditional probability of event X given event Y.

We are told that $\operatorname{Pr}(A)=0.20 ; \operatorname{Pr}(B)=0.80 ; \operatorname{Pr}(D \mid A)=0.04$ and $\operatorname{Pr}(D \mid B)=0.01$ We are asked to find $\operatorname{Pr}(A \mid D)$.

$$
\begin{aligned}
\operatorname{Pr}(A \text { and } D) & =\operatorname{Pr}(D \mid A) \cdot \operatorname{Pr}(A) \\
& =(0.04) \cdot(0.20)=0.008 \\
\operatorname{Pr}(D) & =\operatorname{Pr}(D \text { and } A)+\operatorname{Pr}(D \text { and } B) \\
& =\operatorname{Pr}(D \mid A) \cdot \operatorname{Pr}(A)+\operatorname{Pr}(D \mid B) \cdot \operatorname{Pr}(B) \\
& =(0.04) \cdot(0.20)+(0.01) \cdot(0.80)=0.008+0.008=0.016
\end{aligned}
$$

Finally, $\quad \operatorname{Pr}(A \mid D)=\operatorname{Pr}(A$ and $D) / \operatorname{Pr}(D)$

$$
\begin{aligned}
& =0.008 / 0.016 \\
& =50 \%
\end{aligned}
$$

Problem 5

Let r denote the constant annual percentage increase that would have effectively produced the same price at the end of three years. Then,

$$
\begin{aligned}
(1+r)^{3} & =(1+0.40) \cdot(1+0.01) \cdot(1+0.10)=(1.40) \cdot(1.01) \cdot(1.10)=1.5554 \\
1+r & =(1.5554)^{1 / 3}=1.1586369 \\
r & =0.1586369=15.86369 \%
\end{aligned}
$$

Note that this is quite different from the arithmetic average of the three annual increases of 10%, 1% and 40% (which is 17%).

Problem 6

Problem 6 (continued)

