Business Statistics: A Decision-Making Approach 6th Edition

Chapter 4 Using Probability and Probability Distributions

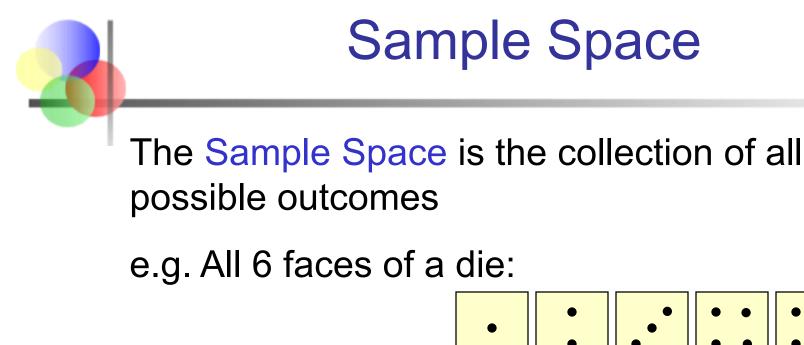
Chapter Goals

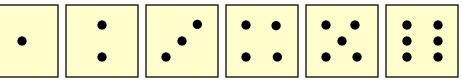
After completing this chapter, you should be able to:

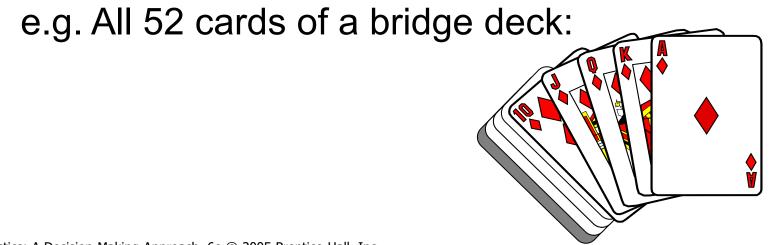
- Explain three approaches to assessing probabilities
- Apply common rules of probability
- Use Bayes' Theorem for conditional probabilities
- Distinguish between discrete and continuous probability distributions
- Compute the expected value and standard deviation for a discrete probability distribution

Important Terms

- Probability the chance that an uncertain event will occur (always between 0 and 1)
- Experiment a process of obtaining outcomes for uncertain events
- Elementary Event the most basic outcome possible from a simple experiment
- Sample Space the collection of all possible elementary outcomes





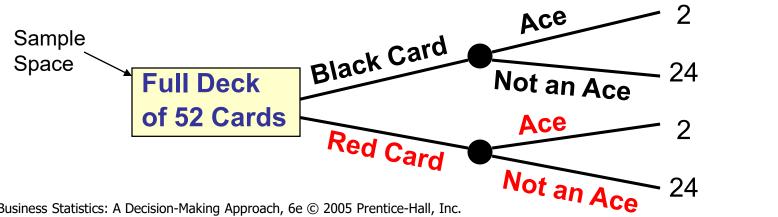


- Elementary event An outcome from a sample space with one characteristic
 - Example: A red card from a deck of cards
- Event May involve two or more outcomes simultaneously
 - Example: An ace that is also red from a deck of cards

Visualizing Events

Contingency Tables

	Ace	Not Ace	Total
Black	2	24	26
Red	2	24	26
Total	4	48	(52)



Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Sample

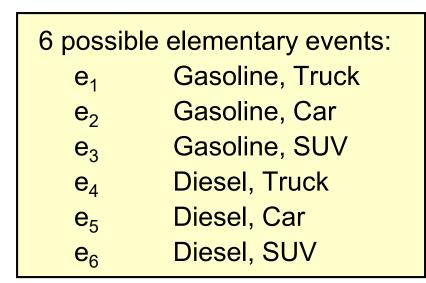
Space

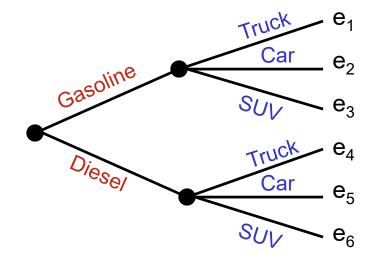
Elementary Events

A automobile consultant records fuel type and vehicle type for a sample of vehicles

2 Fuel types: Gasoline, Diesel

3 Vehicle types: Truck, Car, SUV

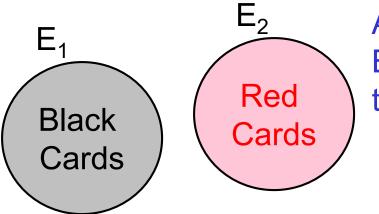




Probability Concepts

Mutually Exclusive Events

- If E₁ occurs, then E₂ cannot occur
- E₁ and E₂ have no common elements



A card cannot be Black and Red at the same time.

 Independent: Occurrence of one does not influence the probability of occurrence of the other

 Dependent: Occurrence of one affects the probability of the other

Independent vs. Dependent Events

Independent Events

- E_1 = heads on one flip of fair coin
- E_2 = heads on second flip of same coin

Result of second flip does <u>not</u> depend on the result of the first flip.

- Dependent Events
 - E_1 = rain forecasted on the news
 - E_2 = take umbrella to work

Probability of the second event is affected by the occurrence of the first event

Assigning Probability

Classical Probability Assessment

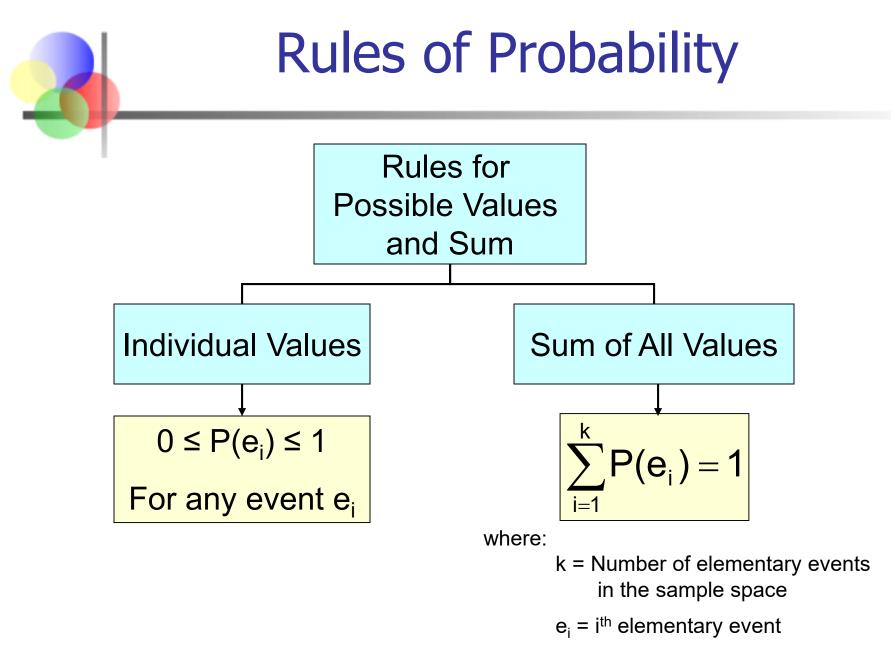
$P(E_i) = \frac{\text{Number of ways } E_i \text{ can occur}}{\text{Total number of elementary events}}$

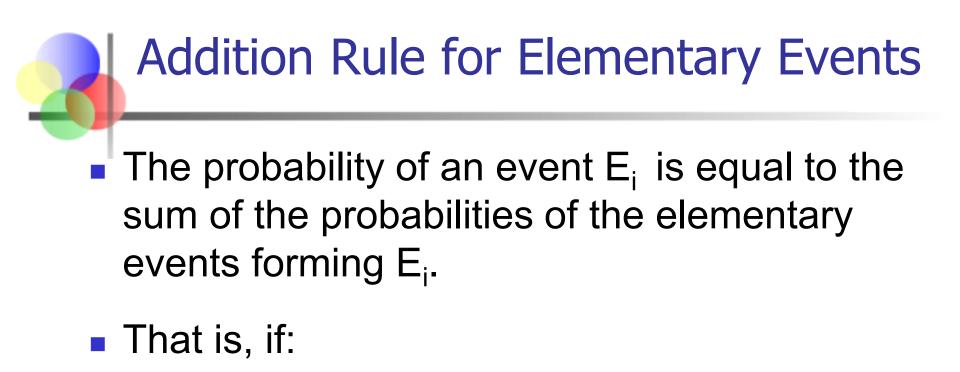
Relative Frequency of Occurrence

Relative Freq. of
$$E_i = \frac{\text{Number of times } E_i \text{ occurs}}{N}$$

Subjective Probability Assessment

An opinion or judgment by a decision maker about the likelihood of an event





$$E_i = \{e_1, e_2, e_3\}$$

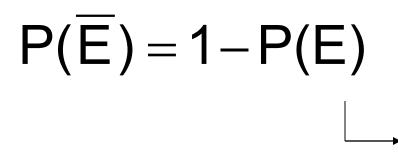
then:

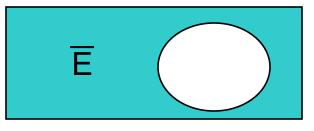
$$P(E_i) = P(e_1) + P(e_2) + P(e_3)$$

Complement Rule

- The complement of an event E is the collection of all possible elementary events **not** contained in event E. The complement of event E is represented by E.
- Complement Rule:



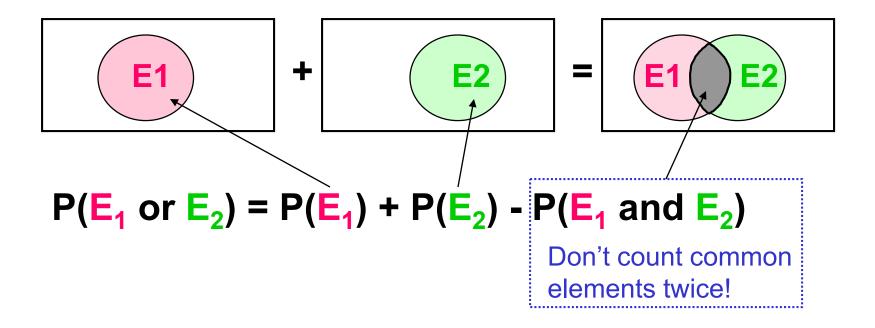




Addition Rule for Two Events

Addition Rule:

$P(E_1 \text{ or } E_2) = P(E_1) + P(E_2) - P(E_1 \text{ and } E_2)$



Addition Rule Example

P(Red or Ace) = P(Red) +P(Ace) - P(Red and Ace)

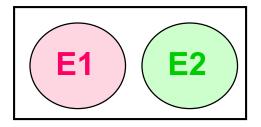
= 20	6/52 + 4	/52 - <mark>2</mark> /52	= 28/52	
	Color			Don' the ty
Туре	Red	Black	Total	aces
Ace	2	2	4	
Non-Ace	24	24	48	
Total	26	26	52	

Don't count the two red aces twice!

Addition Rule for Mutually Exclusive Events

If E1 and E2 are mutually exclusive, then

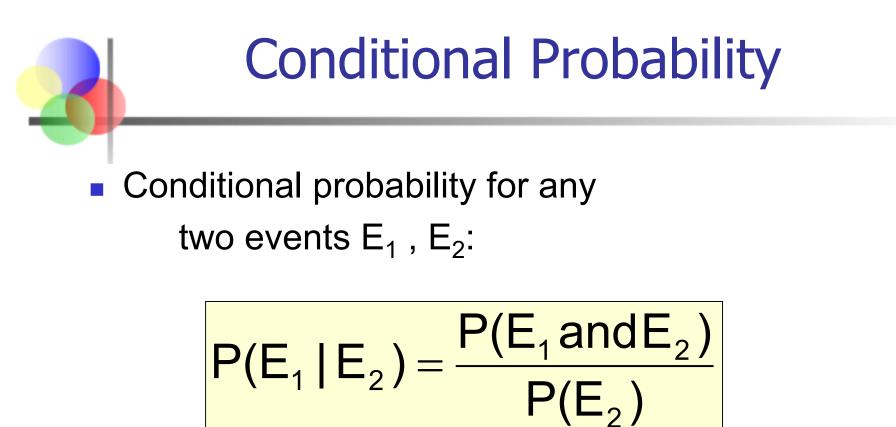
$$P(E1 \text{ and } E2) = 0$$



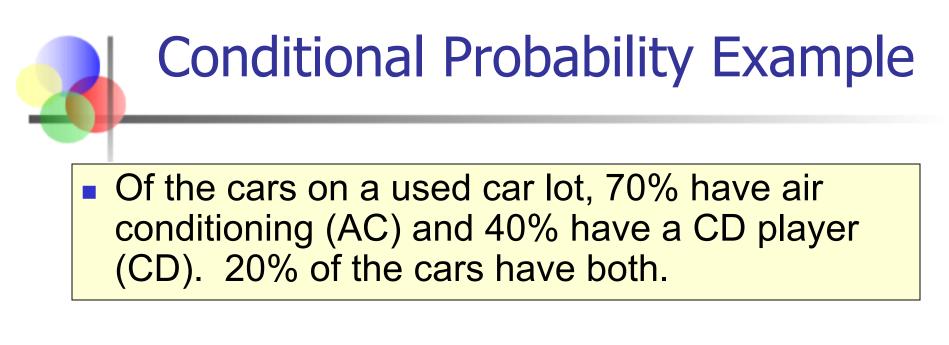
$$P(E_{1} \text{ or } E_{2}) = P(E_{1}) + P(E_{2}) - P(E_{1} \text{ and } E_{2}) \stackrel{\text{francestressure}}{=} P(E_{1}) + P(E_{2})$$

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

So



where $P(E_2) > 0$



What is the probability that a car has a CD player, given that it has AC ?

i.e., we want to find P(CD | AC)

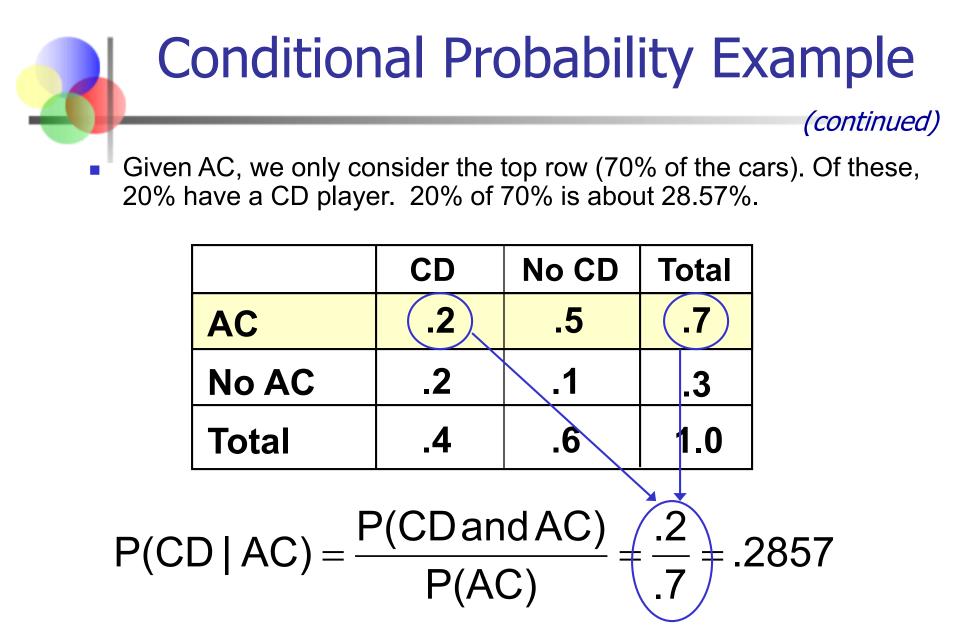
Conditional Probability Example

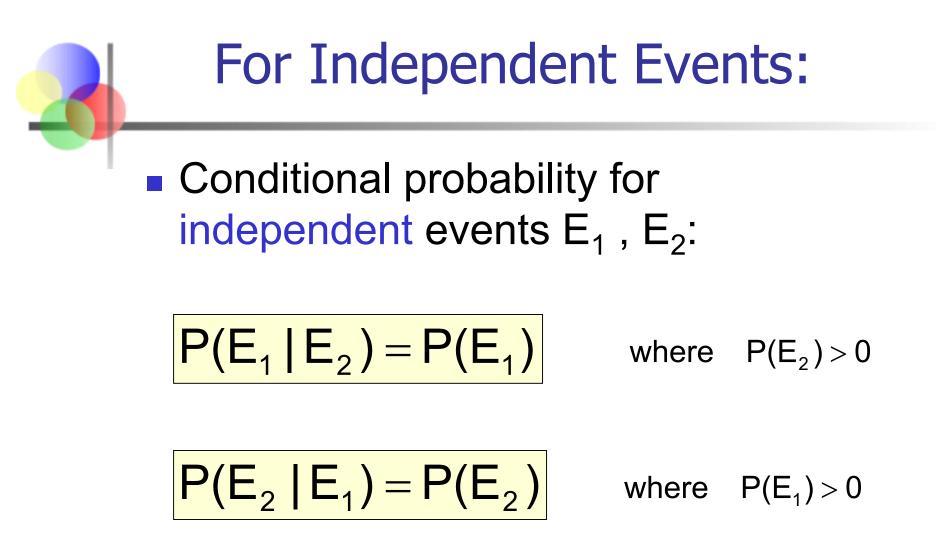
(continued)

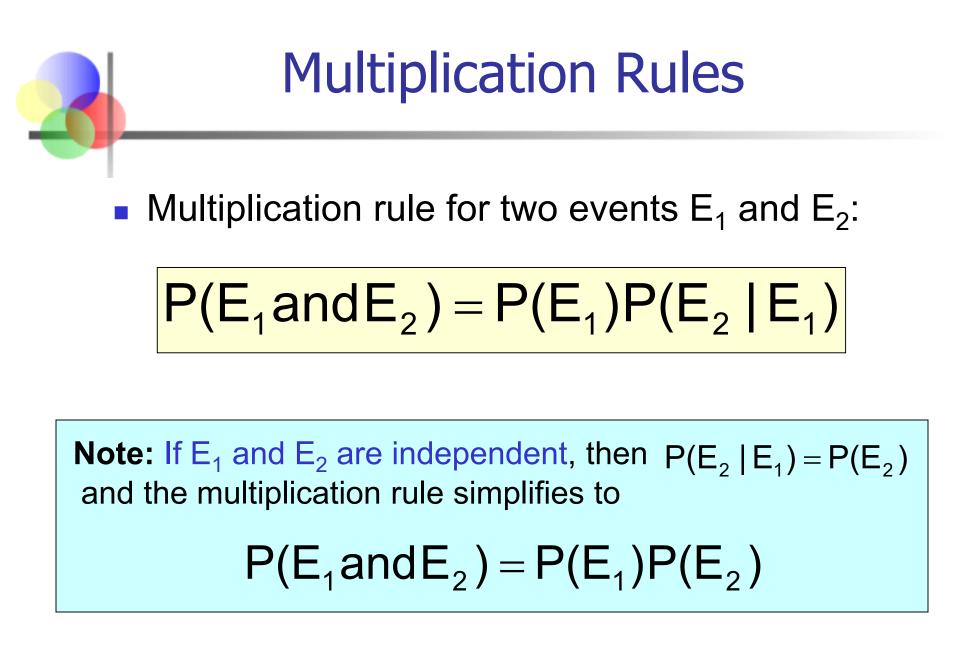
Of the cars on a used car lot, 70% have air conditioning (AC) and **40%** have a CD player (CD). **20%** of the cars have both.

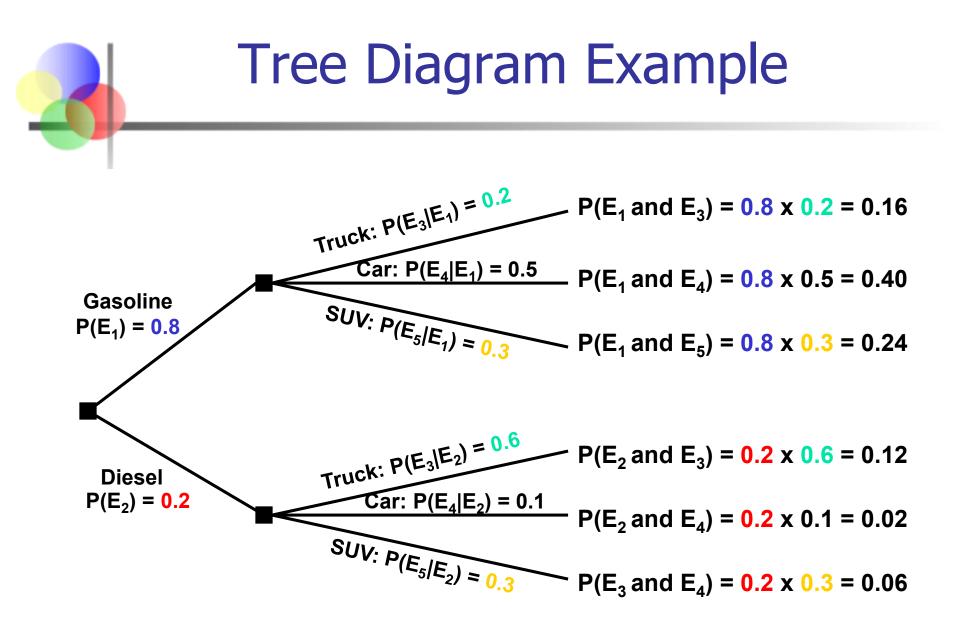
	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$P(CD | AC) = \frac{P(CD \text{ and } AC)}{P(AC)} = \frac{.2}{.7} = .2857$$









$P(E_{i} | B) = \frac{P(E_{i})P(B | E_{i})}{P(E_{1})P(B | E_{1}) + P(E_{2})P(B | E_{2}) + ... + P(E_{k})P(B | E_{k})}$

- where:
 - $E_i = i^{th}$ event of interest of the k possible events
 - $B = new event that might impact P(E_i)$
 - Events E_1 to E_k are mutually exclusive and collectively exhaustive

Bayes' Theorem Example

- A drilling company has estimated a 40% chance of striking oil for their new well.
- A detailed test has been scheduled for more information. Historically, 60% of successful wells have had detailed tests, and 20% of unsuccessful wells have had detailed tests.
- Given that this well has been scheduled for a detailed test, what is the probability that the well will be successful?

Bayes' Theorem Example

(continued)

- Let S = successful well and U = unsuccessful well
- P(S) = .4, P(U) = .6 (prior probabilities)
- Define the detailed test event as D
- Conditional probabilities:

$$P(D|U) = .2$$

Revised probabilities

Event	Prior Prob.	Conditional Prob.	Joint Prob.	Revised Prob.
S (successful)	.4	.6	.4*.6 = .24	.24/.36 = .67
U (unsuccessful)	.6	.2	.6*.2 = .12	.12/.36 = .33

Bayes' Theorem Example

(continued)

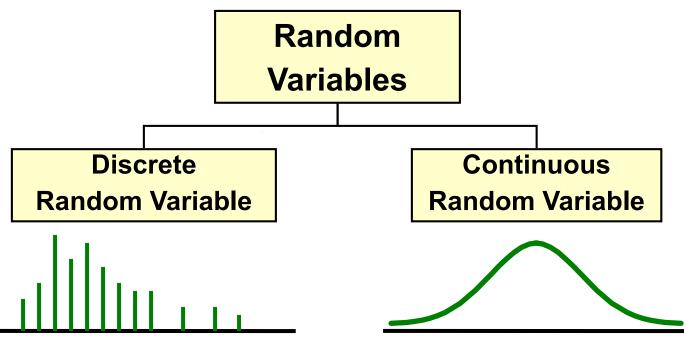
 Given the detailed test, the revised probability of a successful well has risen to .67 from the original estimate of .4

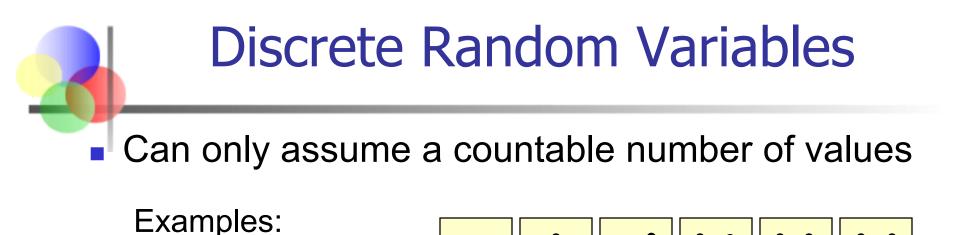
Event	Prior Prob.	Conditional Prob.	Joint Prob.	Revised Prob.
S (successful)	.4	.6	.4*.6 = .24	.24/.36 = .67
U (unsuccessful)	.6	.2	.6*.2 = .12	.12/.36 = .33

Introduction to Probability Distributions

Random Variable

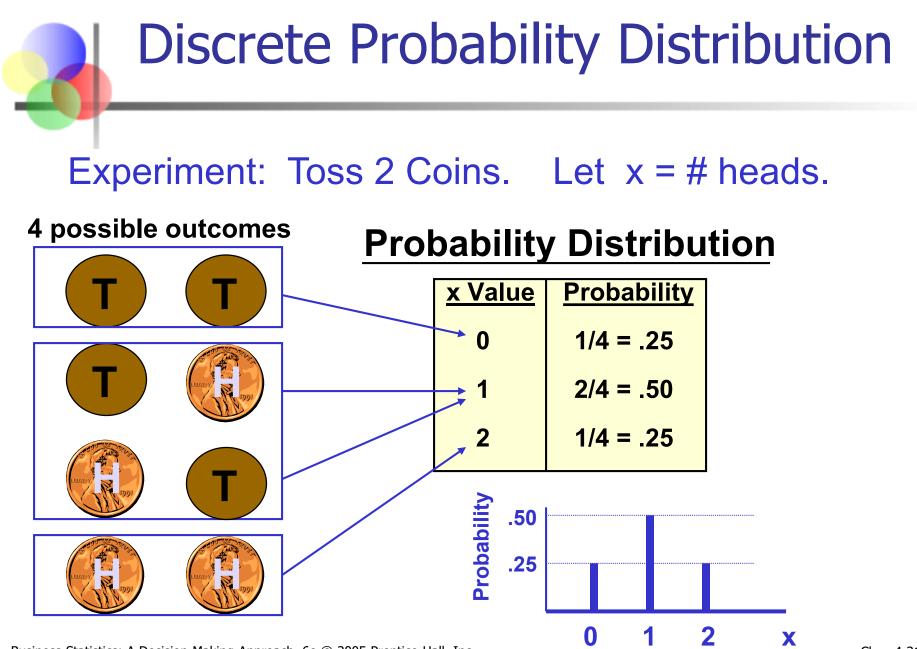
 Represents a possible numerical value from a random event





 Roll a die twice
Let x be the number of times 4 comes up (then x could be 0, 1, or 2 times)

 Toss a coin 5 times.
Let x be the number of heads (then x = 0, 1, 2, 3, 4, or 5)



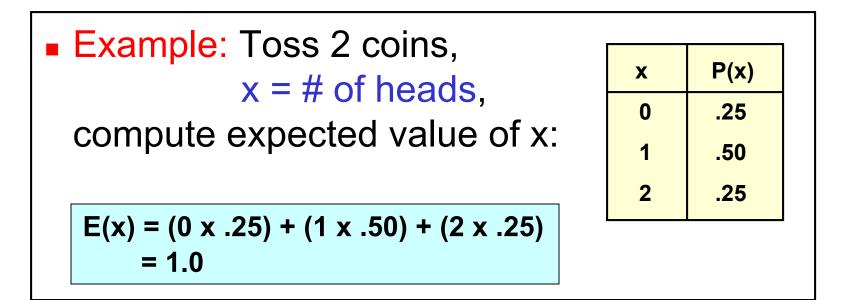
Discrete Probability Distribution

- A list of all possible [x_i, P(x_i)] pairs
 - x_i = Value of Random Variable (Outcome)
 - $P(x_i)$ = Probability Associated with Value
- x_i's are mutually exclusive (no overlap)
- x_i's are collectively exhaustive (nothing left out)
- $0 \le P(x_i) \le 1$ for each x_i
- Σ P(x_i) = 1

Discrete Random Variable Summary Measures

Expected Value of a discrete distribution (Weighted Average)

$$\mathsf{E}(\mathsf{x}) = \Sigma \mathsf{x}_{\mathsf{i}} \mathsf{P}(\mathsf{x}_{\mathsf{i}})$$



Discrete Random Variable Summary Measures

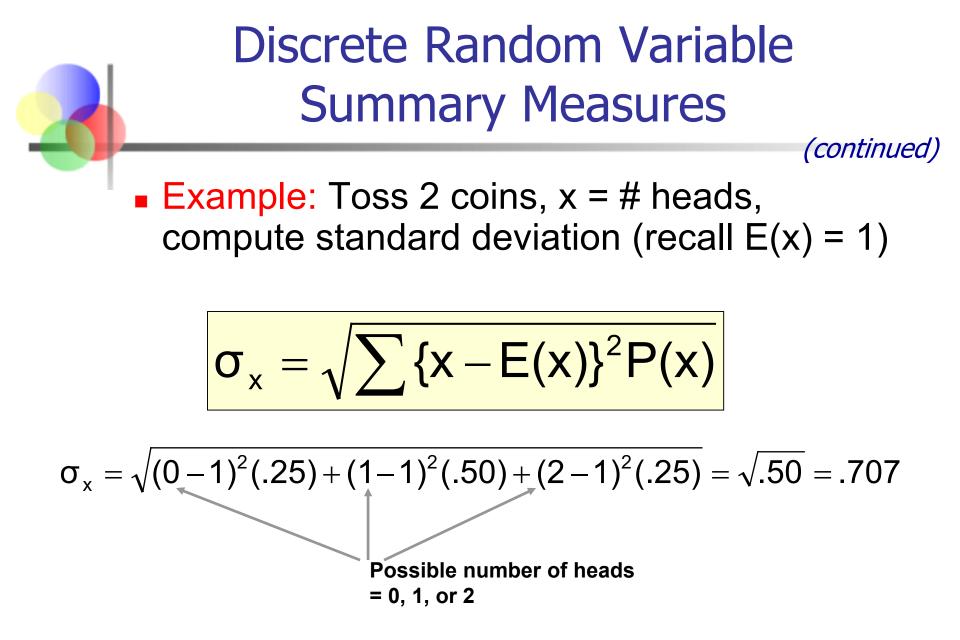
(continued)

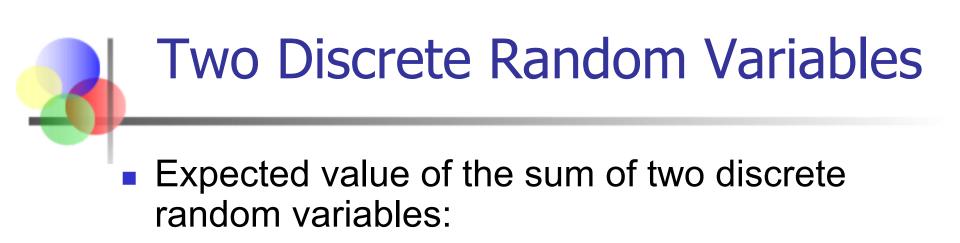
Standard Deviation of a discrete distribution

$$\sigma_{x} = \sqrt{\sum \{x - E(x)\}^{2} P(x)}$$

where:

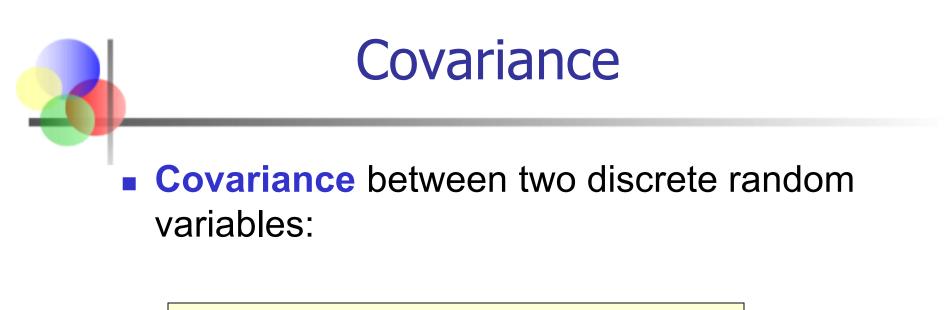
- E(x) = Expected value of the random variable
 - x = Values of the random variable
- P(x) = Probability of the random variable having the value of x





$$E(x + y) = E(x) + E(y)$$
$$= \Sigma x P(x) + \Sigma y P(y)$$

(The expected value of the sum of two random variables is the sum of the two expected values)



$$\sigma_{xy} = \Sigma [x_i - E(x)][y_j - E(y)]P(x_iy_j)$$

where:

 x_i = possible values of the x discrete random variable y_j = possible values of the y discrete random variable $P(x_i, y_j)$ = joint probability of the values of x_i and y_j occurring

Interpreting Covariance

Covariance between two discrete random variables:

 $\sigma_{xy} > 0 \longrightarrow x$ and y tend to move in the same direction

 $\sigma_{xy} < 0 \longrightarrow x$ and y tend to move in opposite directions

 $\sigma_{xy} = 0 \longrightarrow x$ and y do not move closely together

Correlation Coefficient

The Correlation Coefficient shows the strength of the linear association between two variables

$$\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

where:

 $\label{eq:standard} \begin{array}{l} \rho = \text{correlation coefficient ("rho")} \\ \sigma_{xy} = \text{covariance between x and y} \\ \sigma_x = \text{standard deviation of variable x} \\ \sigma_y = \text{standard deviation of variable y} \end{array}$

Interpreting the Correlation Coefficient

The Correlation Coefficient always falls between -1 and +1

 $\rho = 0 \rightarrow x$ and y are not linearly related.

The farther ρ is from zero, the stronger the linear relationship:

 $\rho = +1 \rightarrow x$ and y have a perfect positive linear relationship

 $\rho = -1 \rightarrow x$ and y have a perfect negative linear relationship

Chapter Summary

- Described approaches to assessing probabilities
- Developed common rules of probability
- Used Bayes' Theorem for conditional probabilities
- Distinguished between discrete and continuous probability distributions
- Examined discrete probability distributions and their summary measures

SAS Exercise

Based on the Ketchup data

- What is the covariance between the prices of the different brands?
- What is the correlations between the prices of the different brands?
- What is your inference based on the above findings?
- What is the correlation between the promotions of the different brands? What is your inference based on these findings?