${ }^{1} Q_{112}$

Problem 1

Bob makes a one-time deposit of $\$ 1,000$ in a savings account with an interest rate of 10% per year. Interest is compounded and accrued daily. How many days will it take for the account value to exceed $\$ 1,200$?

Problem 2

Consider a set of 100 widgets, of which 25 are defective and 75 are OK. If 5 widgets are selected randomly from this set, what is the probability of obtaining exactly 2 defective widgets?

Problem 3

If Q denotes quantity and P denotes price, demand for a certain monopolist's product is given by $Q=100-P$, while the monopolist's cost is given by $750+8 Q$. What price must the monopolist charge in order to maximize her profit?

Problem 4

Acme Widgets Inc. has two factories, A and B. Factory A contributes 20% of Acme's annual output of widgets, while Factory B contributes 80%. Of the widgets produced by Factory A, roughly 4% are defective and 96% are non-defective. Of the widgets produced by Factory B, only 1% are defective. If a widget is selected at random from the Acme's annual output and is found to be defective, what is the likelihood that it was produced by Factory A ?

Problem 5

Suppose the price of a stock increases by 40% in Year 1, by 1% in Year 2 and by 10% in Year 3. What is the constant annual percentage increase that would have effectively produced the same price at the end of three years?

Problem 6

Suppose $Q=R^{-0.8 U} S^{0.4 V} T^{2.6 W}$. Paying special attention to curvature, sketch a "rough" graph of:

- Q against R (for $R>0$) when $S=T=U=V=W=1$
- Q against S (for $S>0$) when $R=T=U=V=W=1$
- Q against T (for $T>0$) when $R=S=U=V=W=1$
- Q against $U \quad$ when $R=2$ and $S=T=V=W=1$
- Q against $V \quad$ when $S=2$ and $R=T=U=W=1$
- Q against $W \quad$ when $T=2$ and $R=S=U=V=1$.

The absolute numerical values are not important. The shape and curvature is important. Identify each graph as either concave or convex.

